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It has been shown that an analytic symplectic map can be directly converted into a product of Lie
transformations in the form of integrable polynomial factorization with the desired accuracy. A map in
the form of integrable polynomial factorization is exactly symplectic and easy to evaluate exactly. Error
involved in the integrable polynomial factorization has been studied with the case of the Hénon map.
The results suggest that the map in the form of integrable polynomial factorization is a reliable and con-
venient model for the study of the long-term behavior of a symplectic system such as a large storage ring.

PACS number(s): 41.85.—p, 29.20.—c, 29.27.Bd, 03.20.+1i

I. INTRODUCTION

The study of Hamiltonian systems can often be accom-
plished by using one-turn maps, maps on the Poincaré
sections—a great conceptual and computational
simplification. For a complicated, system such as a large
storage ring with thousands of nonlinear elements, how-
ever, it is impractical to extract an exact one-turn map
even though analytic forms of Hamiltonians for individu-
al elements are known. Instead, a truncated Taylor ex-
pansion of the one-turn map can be easily obtained
through concentrating the actions of individual elements
by means of Lie and differential algebra [1-3]. The trun-
cation inevitably violates the symplectic condition and, as
a consequence, leads to spurious effects if the truncated
map is used to study the long-term behavior of the system
[3]. One way to recover the symplecticity is to convert
the truncated map order by order into a product of Lie
transformations by means of the Dragt-Finn factorization
[4]. A map in the form of Lie transformations is
guaranteed to be symplectic, but it generally cannot be
used for tracking directly because evaluating a nonlinear
map in such a form is equivalent to solving nonlinear
Hamiltonian systems, which cannot be done in general.
In a previous work [5], we have found that Lie transfor-
mations associated with a special class of homogeneous
polynomials, called integrable polynomials, can be evalu-
ated exactly. Moreover, any homogeneous polynomial
can be written as a sum of integrable polynomials of the
same degree. A symmetric integrable polynomial factori-
zation has thus been developed to convert a symplectic
map in the form of Dragt-Finn factorization into a prod-
uct of Lie transformations associated with integrable po-
lynomials by using symplectic integrators [5]. A map in
the form of integrable polynomial factorization, called an
integrable polynomial factorization map, is exactly sym-
plectic and easy to evaluate exactly. In this paper we will
show that an integrable polynomial factorization map
can be directly obtained from a symplectic system
without invoking Dragt-Finn factorization. With this
scheme, the total number of nonlinear kicks in the inte-
grable polynomial factorization map is greatly reduced.
Furthermore, the elimination of unnecessary computa-
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tion for Dragt-Finn factorization makes the integrable
polynomial factorization more accurate.

The paper is organized as follows: In Sec. II we de-
scribe the concept of a truncated symplectic map and
briefly recall some of the results of the integrable polyno-
mial for Lie transformations. The integrable polynomial
factorization is discussed in Sec. III. In Sec. IV the error
involved in the integrable polynomial factorization is
studied with an example of the Hénon map. Section V
contains our conclusions

II. THE TAYLOR MAP OF SYMPLECTIC
SYSTEMS AND INTEGRABLE POLYNOMIALS
FOR LIE TRANSFORMATIONS

At any ‘“‘checkpoint” of an accelerator, motions of par-
ticles can be described mathematically by a six-
dimensional symplectic one-turn map,

=Mz, (1)
where
2=(2,25,23,24,25,2¢)

is a phase-space vector and z; . ; is the conjugate momen-
ta of z; for i =1, 2, and 3. In this paper we shall be work-
ing with this six-dimensional phase space. The results
can, however, be applied to systems with any degree of
freedom. M is, in general, a nonlinear functional opera-
tor. Because we are usually not interested in transforma-
tions that simply translate the origin in phase space, only
maps that map the origin to itself (z=0 is the closed or-
bit) are considered. Within its analytic domain, //l can be
expanded in a power series of z,

© N
=3 UG,z)= 3 U(i,z)+e(N +1), 2)

i=1 i=1

where U(i,z) is a vectorial homogeneous polynomial in z
of degree i,
Uli,z)= 3 wWo)z]'25%23°24%25°2¢° (3)
lo|=i

and e(N +1) represents a remainder series consisting of
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terms higher than the Nth order. In Eq. (3), u(o) are
constant coefficients, o denotes a collection of exponents
(0,...,0¢), and |o|=3%_,0;. Truncating the expan-
sion in Eq. (2) at the Nth order results in an Nth-order
Taylor map. Since such truncation inevitably violates the
symplectic condition, the Taylor map typically produces
spurious damping or growth when used to study the
long-term behavior of trajectories. In order to use a one-
turn map to study the long-term stability, the Taylor map
has thus to be replaced by a symplectic map that can be
easy to evaluate exactly and whose effect is identical to
that of the Taylor map through some order. It will be
shown in the following that such a symplectic map can be
constructed as a product of Lie transformations in the
form of integrable polynomial factorization with an accu-
racy up to the truncated order of the Taylor map.

As a prelude to Sec. III, we briefly recall some of the
definitions and results of the integrable polynomial for
Lie transformations. The details can be found in Ref. [5].
For any analytic function g(z), a Lie transformation can
be defined by the exponential series

explig)= 3 —-(g:)", @
n=0 n!
where :g: denotes the Lie operator associated with g,
which is defined by the Poisson bracket operation

3

g:= 3

i=1

_a_g_L___ag__a_ . (5)

0z; 9z;+3 0z;43 Oz

A polynomial g(z) is called an integrable polynomial if
its associated Lie transformation can be evaluated exact-
ly, i.e., exp[:g (2z):]z, can be expressed as an explicit func-
tion of z. Let

(g )k =1,2,... s N (i)}

denote a complete set of integrable polynomials of degree
i, where N, (i) is the number of integrable polynomials of
degree i. It was shown [5] that any polynomial of z can
be written as a sum of integrable polynomials of the same
degree, i.e.,

o, O o o 4 g
fi(z)= HE a(0)z,'z,%2,°2,%25°2°
o|=i
Ng(i)
= 3 &), (6)
k=1

where f;(z) is any homogeneous polynomial of degree i
and a(o) are constant coefficients. In the six-dimensional
phase space, N,(i) is 8, 20, 42, and 79 for i =3, 4, 5, and
6, respectively [5]. Reference [5] contains the details of
the method of constructing integrable polynomials and a
list of integrable polynomials and their associated Lie
transformations expressed as explicit functions of z for
degree 3 to 6.

III. INTEGRABLE POLYNOMIAL
FACTORIZATION

Theorem 1 (factorization theorem). A symplectic map
in Eq. (2) can be written as a product of Lie transforma-
tions in the form of integrable polynomial factorization
with an accuracy up to the truncated order N, i.e.,

Ng(i)

II exp(:g'®:)
k=1

N+1

=R z+o(N+1), (7)

=3

where 7R denotes a linear symplectic transformation.

The symplectic map defined by Eq. (7) is called an inte-
grable polynomial factorization map. Since each
exp(:g{*:)z can be expressed as an explicit function of z,
an integrable polynomial factorization map is composed
of simple iterations (kicks) and is easy to evaluate exactly.
The number of iterations of the Nth-order map is
1+3M4IN, (i). For example, the fifth-order integrable
polynomial factorization map in the six-dimensional
phase space consists of 150 iterations. In the following,
we shall prove theorem 1 by showing that all coefficients
of integrable polynomials g,-”‘) can be obtained order by
order from the coefficients of the Taylor map. The pro-
cedure is similar to the proof of the factorization theorem
for Dragt-Finn factorization [1].

We first demonstrate that /R is symplectic and corre-
sponds to the linear Taylor map. Let M be the Jacobian
matrix of M at z=0, which can be computed from Egs.
(2) and (7) as

Mz=Rz=U(1,z) . (8)

Since M is symplectic, M is a symplectic matrix and
hence R is a linear symplectic transformation associated
with M. Multiplying R ~! on both sides of Eq. (2) yields

R \z=z+ i Ui, z)
i=2
=z+e€(2), 9)
where
Ui, z)=R"'U(i,z)=U(i,M ~'z) (10)

is a vectorial homogeneous polynomial in z of degree i.
Next we will show that g{¥ in Eq. (7) can be obtained
order by order by applying

1
I expli—g®)
k=Ng(i)

to both sides of Eq. (9) successively. In order to simplify
the discussion, we need to have two preparations. First,
it can be easily shown by using Eq. (4) that for any func-
tion f(z),

1 ©
I[I exp:—gf(2)=f(2)+ 3 8,f(z), (11)

k=Ng(i) n=1

where
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Ng(i)
gn=3 :—g!¥:, (12)
k=1
1 Ng(l) N () k (k.)
L 2< —gk+ 3 2 n—g T, (13)
K= ky=2k,=1
A Ny () kg —
m
9= 2 =g+ 2‘, 2 S g ) M—g )™
= =2k =1m=P012)
Nkt (ky)  (ky)
+ 3 3 3 g ug tuTg (14)
Ky =3ky=2k;=1
N0 Ny(i) Ky~ " )
gi“:I 2 (s— k) )4+_ z 2 2 (:__ 1 )"‘l( 2 ™2
Y k=1 NS 1m=P(1,3)
)k, —
1 Mk ) (k,)
_2____ 2 2 :2(:_gi 2:)2
l Nglid ey 1k, 1 (k) (k) (k )
m m m
D> (=g =g gy
k—3k —2k =1m=P(],1,2)
Ne(ih ky—1ky—1 ks —1 (k) (k,) (ky) (k)
+3 3 3 3 g umg tug ug
Ki=4k,=3k;=2k,=1
(15)

In Egs. (14) and (15), 3, p(
ponents m=(m,, ...

-------

,m,). For example,

2 ('_g(k ))m]( (k ))m2 . (k )

m=P(1,2)

The action of 9, on any homogeneous polynomial of de-
gree j results in a homogeneous polynomial of degree
(i —2)n +j. Second, we will use the following lemma
without giving the proof. The proof can be found in Ref.
[1].

Lemma 1. Let U(i,z) be a vectorial homogeneous
polynomial in z of degree i. Suppose it satisfies the rela-
tions

[Z],Uj(z)]=[2j,U1(z)] ) (17)

where U; and U, are the jth and /th components of
U(i,z), respectively. Then such a polynomial exists if
and only if there is a homogeneous polynomial g; , ,(z) of
degree i +1 such that

U(z)=[g;+1,2] . (18)

Taking the Poisson bracket of both sides of Eq. (9) with
itself for different components yields

0=[z,U"(2,2)]+[U{"(2,2),z;]+€(2) , (19)

where U{" and U{" are the jth and Ith components of

) denotes the sum of all different permutations of n integers (/, . ..

,1,) for n ex-

k)

HE 2):)2-1-(:—~g,~(k‘):)2:—g,~( 2. (16)

f

U'Y, respectively. Equating terms of like degree in Eq.
(19) gives the result

[z, UV(2,2)]+[U{V(2,2),z;]=0, (20)

that is, U''Y(2,z) in Eq. (9) satisfies the condition in Eq.
(17) of lemma 1.

Now apply []}—sexp(: —g$¥’:) to both sides of Eq. (9)
By using Eq. (11), one obtains

1
1T expC:

n=8

—g%’”:)ﬁ_lz

8
=z+ 2 —g®R:z+UM(2,2)

+ z UV,z)+ 95, z u'i,z)

i=2

(21
i=2 i=2

+ 2 9 [z+ S U, z)

Accordmg to lemma 1, there exists a homogeneous poly-
nomial 32 _ g4 (z) of degree 3 such that
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8
S :—g¥z+UM2,z)=0, (22)
k=1

and Eq. (21) then becomes

1 ©
I1 exp:—g¥ IR 1z7=2+ T UPi,z)
k=38 i=3

=z+e(3), (23)

where U'?)(i,z) are homogeneous polynomials in z of de-
gree i which are defined by

U?(3,z)=U"3,2)+ 93,2+ ¢, U1 (2,2) , 24)
U2(4,2)=U"(4,2)+ 95,z + 9,,U(2,2)
+9,U3,z), (25)
U?(5,2)=U"(5,2)+ 93,z + 9,,U(2,2)
+9,,U1(3,2)+ 9, UV(4,2)
(26)

38 _,g5¥(z) should be solved from Eq. (22). Because of
Eq. (20),
3

2

i=1

d
9z 13

dz;+

5o
k=1

ﬁ gy
k=1

9
az;

H

i+3

is an exact differential and Eq. (22) can be solved as

8 3
S g =— [ 3 (U045~ U 2, 2)dz; 1] ,
k=1

i=1
(27)

where

Furthermore, 3% _,g%" is independent of the integral
path in Eq. (27) so that one can choose a special integral
path Z=Az and obtain

8 3
S g =—13 [z,U5(2,2)—z,3UV(2,2)] . (28)
k=1 i=1
The coefficients for integrable polynomial of degree 3 are
thus determined by equating like terms on both sides of
Eq. (28).

Comparisons of the right-hand sides of Egs. (9) and
(23) shows that the degree of the remainder has been
raised by 1. Following the same procedure, one can suc-
cessively apply

1

I expt—gi™,
n=Ng(i)

with i =4,5,...,N+1 to increase the degree of the
remainder to N +1 and obtain

1 1

II | II

n=N+1 |k =Ng(n)

exp(:—g¥:) |[R71zZ=z+e(N+1) . (29)

The integrable polynomials

(gFlk=1,2,...,N,(n)}

of degree n =4, ...,N +1 are given by
Ng(fl) 1 3
3 &'=——3 U} (n—1,2)
k=1 n =i
_ZI+3UI("_2)(’I —l,z)] ’ (30)

where U,‘,," ~2(n —1,z) is the mth component of homo-
geneous polynomial U "2(n —1,z) of degree n—1,
which can be computed iteratively from

U7G,2)=U"",z2)+ 3 8, -2k +19mZ
k=2

+ 3 3 Sim-2k+ S U Vz) . (3D
k=112n—1
In Eq. 31), n 22, i 2n, and §,,, is the Kronecker & func-
tion. Inverting the left-hand side of Eq. (29) and neglect-
ing the remainder term, one obtains an integrable polyno-
mial factorization map,
Ng(n)

IT exp(:gl®:)
k=1

N+1

=R ]I

n=3

z. (32)

If the remainder term €(N +1) tends to zero as N— «,
the symplectic map in Eq. (32) can be used to model the
original system with the desired accuracy. In Sec. IV we
shall study, with an example, the total error involved in
the integrable polynomial factorization map and examine
the deviation of the phase-space structure of the map
from that of the original system.

IV. ACCURACY OF INTEGRABLE
POLYNOMIAL FACTORIZATION

In this section we will apply the result of Sec. III to an
exact symplectic map. The integrable polynomial factori-
zation maps will be constructed as approximations to the
exact map. The accuracy of the approximations will be
studied through comparisons of the exact map and the
approximate maps.

Consider a ring with one sextuple kick which is other-
wise linear. The betatron motion in the horizontal plane
can be described as a composition of linear rotation and a
sextuple kick. Let (§,7m) denote normalized canonical
variables. The exact one-turn map is

E=cE+s(n—b&Y),
n'=—sé+c(n—bg?),

where ¢ =cos(2mv), s =sin(2mv), v is the linear tune, and
b the strength of the sextuple kick. Let
z=(x,p)=(b&,bn). Map (33) is then transformed into
the Hénon map and can be written in the form of

z2’=Mz=U(1,z)+U(2,z) , (34)

(33)

where
U(i,z)=[U,(i,z), Up(i,z)]

and
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U.(L,z)=cx+sp , Uyl,z)=—sx+cp, (35)
U,(2,z)=—sx?, U,(2,z)=—cx’. (36)

Figure 1 displays the phase-space portrait of map (34) for
v=0.2114. The dynamic aperture, which is the bound-
ary for global stable motion, is located outside and close
to the fifth-order resonance. Note that in map (34) the
quadratic terms exceed the linear terms when x >1 or
p > 1. The phase-space region of interest is thus

x<1 and p<1. (37

We now apply the formalism in Sec. III to construct
the integrable polynomial factorization map for map (34).
By using Egs. (10) and (28), we obtain

8
> g(3k) = —%c3x3+sc2x2p ~s2cxp2+%s3p3 . (38)
k=1

Comparison of terms on the right-hand side of Eq. (38)
and the standard form of integrable polynomials of de-
gree 3 [5] shows that there are only two nonzero integra-
ble polynomials of degree 3 in Eq. (38), which are

g =—1cxx +scix?p , (39)
g =—s%cxp*+1isp?. (40)

The Lie transformations associated with g}

(5]

and g4 are

x
cxp(:g%”:)x=m , (41)
(22) (se?p—1c?x)(1+sc?x ) +1cx @)
exp(: Jp= R
Plgs P seX(1+sc?x)
(s%cx —1s3p )(1+s2cp)’+1s’p
exp(:gs?:)x = > > 3 - , (43)
s“c(1+s*cp)
exp(:g?P:)p=—2b— (44)

1+s2cp ’

The second-order integrable polynomial factorization
map is thus

K e —

Px

-0.5 Ne="1 ]

1.0

FIG. 1. Phase-space portrait of the Hénon map in Eq. (34)
with v=0.2114.

¢ (m)

FIG. 2. Accuracy of the second-order integrable polynomial
factorization map in Eq. (45) with v=0.2114. ¢ is the angle
variable of polar coordinates. The number on the curve indi-
cates the value of the radius x2+p?.

z'=M,z=R exp(:g3" :)exp(:g ¥ :)z , (45)
where R is the rotation defined by Eq. (35). In order to
obtain the next order map, we use Eqgs. (24) and (30) and
find

20
S g =—sZk*x3p+2s3c3x2p2—stcixp? . (46)

k=1

Comparing Eq. (46) to the standard form of integrable
polynomials of degree 4 yields

g =—s%*%, 47)
gﬁﬂm=233c3x2p2 , (48)
g =—s%2xp3, (49)

and the rest of the integrable polynomials of degree 4 in
Eq. (46) are zero. The Lie transformations associated
with g, g{19, and g{!! are [5]

ex (: (9):)x=——‘-‘$__— , (50)
P84 V'1—2s2c*x?

33

_af

¢ (m)

FIG. 3. Accuracy of the third-order integrable polynomial
factorization map in Eq. (56) as v=0.2114. ¢ is the angle vari-
able of polar coordinates. The number on the curve indicates
the value of the radius x2+p?.
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exp(:g:)p=p[1—2s%c*x 232, (51)
exp(:g{!¥:)x =x exp[ —4s3c3xp], (52)
exp(:g{'®¥:)p =p exp[4s’c’xp], (53)
exp(:g ! :)x =x[1+2s%2p2/%, (54)

SR S— (55)
Vitastep?’

and the third-order integrable polynomial factorization
map is then

exp(:gyV:)p =

' =Mz=FR exp(:g'":)exp(:g{¥:Jexp(:g{:)

Xexp(:gy'?:exp(:g{!V:)z . (56)

It should be noted that the maps in Eqs. (45) and (56) val-
id only when x <1/|sc?|, p <1/|s%| and 1—2s%¢*x%>0,
1+2s%2p2>0, respectively. Within the phase-space re-
gion of interest defined by Eq. (37), these conditions are
always satisfied.

To estimate errors of the approximate maps in Egs.
(45) and (56), we computed [6]

8,(z)=|Mz—M,z||/|z] , (57)

where ||-|| denotes the usual Euclidean norm and sub-
script n denotes the order of integrable polynomial fac-
torization map. In Figs. 2 and 3, 8§,(z) and &;(z) were
plotted, respectively, with polar coordinates defined by
x =||z||cos¢ and p =||z||sing. Inspection of Figs. 2 and 3
shows that the difference between M and M, scales as
llz]”*!. As one increases the truncation order n, this
difference can thus be reduced to be as small as desired.
To examine the long-term behavior of the integrable
polynomial factorization, we repeatedly apply /i, and Ji,
to various initial conditions, respectively. The results are
displayed in Fig. 4 for M, and in Fig. 5 for M;. Compar-
ison of Figs. 1 and 4 shows that within the phase-space
region of interest, the long-term behavior of the exact
map and the integrable polynomial factorization map are
very similar even when the lowest-order approximation

K S —

Py

1.0

FIG. 4. Phase-space portrait of the second-order integrable
polynomial factorization map in Eq. (45) with v=0.2114.

1.0 e
05F

0.0f

< )

-0.5} ]

_10 ; PERETERT ST ST SRS S G ST S S T G i
-1.0 -0.5 0.0 0.5 1.0

FIG. 5. Phase-space portrait of the third-order integrable po-
lynomial factorization map in Eq. (56) with v=0.2114.

was used in the approximate map. Comparison of Figs. 1
and 5 shows that as the order of the approximate map in-
creases, the approximation becomes better. Figure 5
shows that the third-order approximate map can repro-
duce the 26th-order resonance of the original system in
the region where the maps are quite nonlinear.

It should be noted that even though all data discussed
here are from the case of v=0.2114, other cases of
different linear tune were also examined and the results
were found to be similar.

V. CONCLUSIONS

It was shown that an analytic symplectic map can be
written as a product of Lie transformations in the form of
integrable polynomial factorization. Since the Lie trans-
formation associated with an integrable polynomial can
be expressed as an explicit function of phase-space vari-
ables, the integrable polynomial factorization map is easy
to evaluate exactly. As an example, we have constructed
the second- and third-order integrable polynomial factor-
ization maps for the Hénon map. The error involved in
the integrable polynomial factorization was studied with
the comparisons of the exact and approximate maps.
The error was found to be as small as desired. The long-
term behavior of integrable polynomial factorization
maps were also examined by repeatedly applying the
maps to various initial conditions. It was found that the
exact and approximate maps have similar long-term
behavior even in regions where the maps are quite non-
linear. Over the phase-space region of interest, the origi-
nal symplectic system can be well approximated by an in-
tegrable polynomial factorization map with the desired
accuracy and the long-term tracking study can therefore
be directly conducted with the integrable polynomial fac-
torization map.
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